If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-105x=0
a = 15; b = -105; c = 0;
Δ = b2-4ac
Δ = -1052-4·15·0
Δ = 11025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11025}=105$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-105)-105}{2*15}=\frac{0}{30} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-105)+105}{2*15}=\frac{210}{30} =7 $
| -2(x)=4x^2-x | | 8+7=x | | 5=1+3x | | n^2+n=54 | | 3(x)=-2x+4 | | 2(x+4)-10=5-(2x-4) | | 7/1(h-3)=6 | | 3x^2+7x^2-9x+10=0 | | 2(2p+6)=3(5p+4) | | 4(3x-4)=4(2x-2) | | 4x/5+7=15 | | 4x2-2x-12=0 | | −6(s+11)=−24 | | 3y-4y^2+3y=0 | | X^2-6x-155=0 | | 2x(2)+8x+12=0 | | r-4=6r+26 | | 16+4x=140 | | 3(y-3)=2(1-4y) | | -2x2+4×-67=0 | | 3g+g−–17=–19 | | 0=2x^2-13x-130 | | 2x^2-11x+130=0 | | 16x+32=14x+40 | | 36x+51=6x-9 | | 4(2y-7)+13=9 | | 3p+11=32 | | -2/3*x-9/4=0,8 | | 4(8x+5)=-33x-26 | | 44=20y | | z/12=4/5 | | x+10=4x-40 |